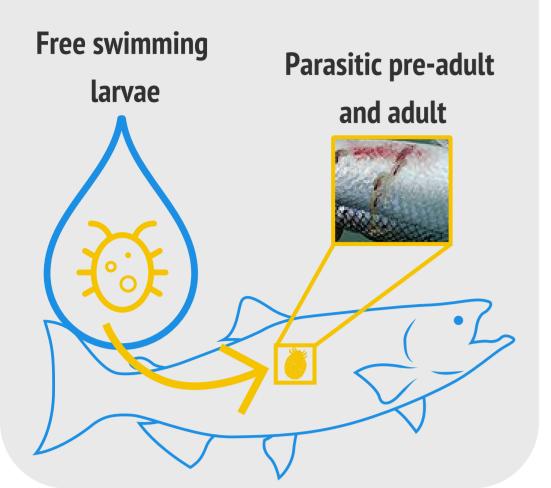
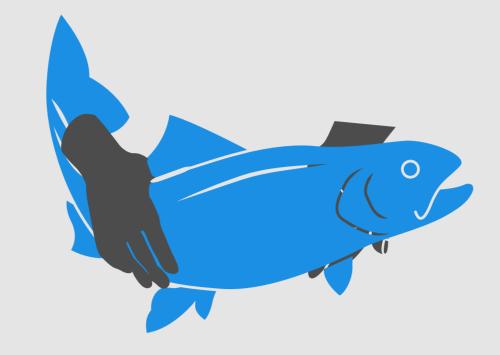
Sea lice management


Comparison of prevention and treatment methods against the salmon parasites *Lepeophtheirus salmonis* and *Caligus elongatus*.

Background

Sea lice


Larval stages are dispersed through the water. Parasitic pre-adult and adult stages attach onto salmon and feed on mucous, skin and tissues.

Sea lice cause open wounds, a lower immune capacity and can cause death

Reduction in natural defences

The mucous layer present on the skin of fish is their natural protection against external parasites, including sea lice.

Common practices during salmon farming require the fish to be handled. Handling damages the fish's protective mucous, making them more vulnerable to sea lice.

Costs

Between 2012 and 2017, 10,130 delousing treatments occurred in Norway¹.

Sea lice have cost US\$4.36 billion from 2013 to 2019 to the salmon farming industry².

Site selection

Some areas have higher sea lice infection rates than others.

In 2012, sea lice levels in Shetland were on average >250% higher than the report level of a weekly average of 3 adult females per fish, whereas Orkney had very low rates³.

Note: since 2019, the report level is a weekly average of 2 adult females per fish

Careful selection of new farm locations using oceanographic modelling is needed to prevent farms being established in areas with known or likely sea lice infestations. something

Fallow periods can greatly reduce the risk of recurring sea lice infestations, especially if co-ordinated amongst groups of farms.

Prevention **Functional** Sea lice Deep lights / Sea lice Electrical **Snorkel nets** feeding skirts fence feed trap A fabric which Feed which contains Salmon are forced to Traps are placed Electrical pulses are Salmon are covers the top of ingredients that around the pens stay below the sea transmitted through attracted to depths which attract sea lice the net which thicken the mucus lice depth line using the water and How it works without sea lice prevents sea lice layer, promote away from salmon nets. They can only inactivate lice before with light or feed healing or repel larvae from entering surface in one area to using light and they attach onto the sea pens fill their swim bladder odorant copepods salmon In lab studies: 8% Effectiveness Sea lice skirts delousing, 20% generally low as fish Site dependent: New technology, effective in trapping surface to fill swim have been Effectiveness 20% effective⁴ 0-75% results are promising, found to be 30bladder. Lights unattached adults effective¹¹ 50-80% effective¹² 80% effective^{9,10} and 70% effective in ineffective during trapping larvae⁵ the day^{6,7} **Mortality risk** No risk known No risk known

		Ť				
Injury risk	No risk known	No risk known	No risk known	No risk known	Increase in snout injuries ¹¹	No risk known
Other welfare concern	No concern known	No concern known	Salmon prefer to swim at the surface. This method alters natural behaviours ⁸	Oxygen can become depleted when using sea skirts. Monitoring water quality is important ¹⁰	Snorkel nets can affect salmon behaviour and prevent access to optimal water conditions ¹¹	No concern known
Environmental impact	No impact known	No impact known	No impact known	No impact known	No impact known	No impact known
Treatment						
	Cleaner fish	Hydrogen peroxide	Chemotherapeutic	Laser	Thermolicer/ Optilicer	Mechanical
How it works	Cleaner fish are housed in the same sea pens as salmon and eat sea lice that are on the salmon	Infected salmon are exposed to hydrogen peroxide at concentrations which kill sea lice	Infected salmon are exposed to chemical via baths or feed	An underwater camera detects sea lice and a laser kills them	Salmon are pumped through heated/cooled water. Sea lice fall off	Salmon are pumped through water jets. Sea lice are dislodged
Effectiveness	Effectiveness is limited and depends on the species, the time and density of stocking and cleanliness of the nets ¹³	7.5-99% effective depending on: duration, concentration and previous treatments ¹⁶	13-96% effective depending on: duration, concentration and previous treatments ¹⁴	Research found no effectiveness ²³	19-100% effective on mobile lice; not effective on attached lice ^{1,19}	82-100% effective on mobile lice; effect on attached lice uncertain ¹
Mortality risk	Up to 100% of cleaner fish ¹⁵	Mortality can be over 50% ¹⁷	Mortality can be over 10% and on rare occasions, over 50% ¹	No risk known	Mortality can be over 25% ¹	Mortality can be over 10% ¹
lnjury risk	Aggression between cleaner fish and salmon can lead to injuries for both salmon and cleaner fish ¹⁴	Gill lesions and gill necrosis. Damaged mucous layer ¹⁸	Gill damage ²⁰	No risk known	Cold water: injuries to skin and eyes. Injuries to fins during treatments >10 min ²⁴	Scale loss is very common ¹
Other welfare concern	Welfare of cleaner fish is often poor (lack of feed, enrichment) and cleaner fish can be subject to aggression ¹⁵	Physiological and oxidative stress. Decreased resistance to disease ¹⁹	Stressful procedure. Lethal to surrounding animals ²¹	No concern known	Warm water: colliding with tank, loss of equilibrium. Cold water: loss of movement, disrupted feeding ²⁵	Stressful procedure ¹
Environmental impact	Some cleaner fish are wild caught. This depletes wild populations ¹⁴	No impact known	Environmental pollution ²²	No impact known	No impact known	No impact known

References

1) Overton, K., Dempster, T., Oppedal, F., Kristiansen, T.S., Gismervik, K. and Stien, L.H., 2019. Salmon lice treatments and salmon mortality in Norwegian aquaculture: a review. Reviews in Aquaculture, 11(4), pp.1398-1417.

2) Just Economics (2021) Dead Loss: the high cost of poor salmon farming practices. [Online] Available at:

https://www.justeconomics.co.uk/health-and-well-being/dead-loss

3) The Guadian (2012) Scottish fish farmers use record amounts of parasite pesticides [Online] Available at:

https://amp.theguardian.com/environment/2012/sep/10/scottish-fish-farmers-parasite-pesticide

4) Jensen, L.B., Provan, F., Larssen, E., Bron, J.E. and Obach, A., 2015. Reducing sea lice (*Lepeophtheirus salmonis*) infestation of farmed Atlantic salmon (*Salmo salar* L.) through functional feeds. Aquaculture Nutrition, 21(6), pp.983-993.

5) Novales Flamarique, I., Gulbransen, C., Galbraith, M. and Stucchi, D., 2009. Monitoring and potential control of sea lice using an LEDbased light trap. Canadian Journal of Fisheries and Aquatic Sciences, 66(8), pp.1371-1382.

6) Bui, S., Oppedal, F., Nilsson, J., Oldham, T.M.W. and Stien, L.H., 2019. Summary and status of deep lights and deep feed use in commercial settings: welfare, behaviour and infestation at three case study sites—End report from the FHF projects 901154 "Dypelysogfôring". Rapport fra havforskningen.

7) Frenzl, B., Stien, L.H., Cockerill, D., Oppedal, F., Richards, R.H., Shinn, A.P., Bron, J.E. and Migaud, H., 2014. Manipulation of farmed Atlantic salmon swimming behaviour through the adjustment of lighting and feeding regimes as a tool for salmon lice control. Aquaculture, 424, pp.183-188.

8) Frenzl, B., Stien, L.H., Cockerill, D., Oppedal, F., Richards, R.H., Shinn, A.P., Bron, J.E., Migaud, H., 2014. Manipulation of farmed Atlantic salmon swimming behaviour through the adjustment of lighting and feeding regimes as a tool for salmon lice control. Aquaculture 424–425, 183–188.

9)Grøntvedt, R.N., Kristoffersen, A.B. and Jansen, P.A., 2018. Reduced exposure of farmed salmon to salmon louse (*Lepeophtheirus salmonis* L.) infestation by use of plankton nets: Estimating the shielding effect. Aquaculture, 495, pp.865-872.

10) Stien, L.H., Lind, M.B., Oppedal, F., Wright, D.W. and Seternes, T., 2018. Skirts on salmon production cages reduced salmon lice infestations without affecting fish welfare. Aquaculture, 490, pp.281-287.

11) Oppedal, F., Bui, S., Stien, L.H., Overton, K. and Dempster, T., 2019. Snorkel technology to reduce sea lice infestations: efficacy depends on salinity at the farm site, but snorkels have minimal effects on salmon production and welfare. Aquaculture Environment Interactions, 11, pp.445-457.

12) European Documentation Center (EDC) of the University of Almeria, 2020. New techniques to combat parasites on EU fish farms. [Online] Available at: https://www.cde.ual.es/en/new-techniques-to-combat-parasites-on-eu-fish-farms/

13) Barrett, L.T., Overton, K., Stien, L.H., Oppedal, F. and Dempster, T., 2020. Effect of cleaner fish on sea lice in Norwegian salmon aquaculture: a national scale data analysis. International Journal for Parasitology.

14) OneKind (2018) Cleaner fish welfare on Scotland's salmon farms. [Online] Available at: https://www.onekind.scot/wpcontent/uploads/cleaner-fish-report-final-low-res.pdf

15) Cerbule, K. and Godfroid, J., 2020. Salmon louse (Lepeophtheirus salmonis (Krøyer)) control methods and efficacy in Atlantic salmon (Salmo salar (Linnaeus)) aquaculture: A literature review. Fishes, 5(2), p.11.

16) Treasurer, J. W., S. Wadsworth, and A. Grant. "Resistance of sea lice, *Lepeophtheirus salmonis* (Krøyer), to hydrogen peroxide on farmed Atlantic salmon, *Salmo salar* L." Aquaculture Research 31, no. 11 (2000): 855-860.

17) Overton, K., Samsing, F., Oppedal, F., Dalvin, S., Stien, L.H. and Dempster, T., 2018. The use and effects of hydrogen peroxide on salmon lice and post-smolt Atlantic salmon. Aquaculture, 486, pp.246-252.

18) Rantty, I, Pittman, K and Sweetman, E. (2016) Delousing with hydrogen peroxide: skin, gills and esophagus responses and repair in the first three weeks after treatment, abstract Aquaculture Europe 2016 Edinburgh, Scotland. [Online] Available at:

https://www.was.org/EasOnline/AbstractDetail.aspx?i=6477

19) Vera, L.M. and Migaud, H., 2016. Hydrogen peroxide treatment in Atlantic salmon induces stress and detoxification response in a daily manner. Chronobiology international, 33(5), pp.530-542.

20) OneKind (2018) Fish welfare on scotland's salmon farms. [Online] Available at:

https://www.onekind.scot/wp-content/uploads/Salmon-farm-report-2018.pdf

21) Parsons, A.E., Escobar-Lux, R.H., Sævik, P.N., Samuelsen, O.B. and Agnalt, A.L., 2020. The impact of anti-sea lice pesticides, azamethiphos and deltamethrin, on European lobster (*Homarus gammarus*) larvae in the Norwegian marine environment. Environmental Pollution, p.114725.

22) Haya, K., Burridge, L.E., Davies, I.M. and Ervik, A., 2005. A review and assessment of environmental risk of chemicals used for the treatment of sea lice infestations of cultured salmon. In Environmental effects of marine finfish aquaculture (pp. 305-340). Springer, Berlin, Heidelberg.

23) Bui, S., Geitung, L., Oppedal, F., Barrett, L.T., n.d. Salmon lice survive the straight shooter: a commercial scale sea cage trial of laser delousing. Prev. Vet. Med. 1–22. [Online] Available at: http://lukebarrett.org/pdfs/Bui-et-al-2020-PVM-laser.pdf

24) Overton, K., Oppedal, F., Stien, L.H., Moltumyr, L., Wright, D.W. and Dempster, T., 2019. Thermal delousing with cold water: Effects on salmon lice removal and salmon welfare. Aquaculture, 505, pp.41-46.

25) Nilsson, J., Moltumyr, L., Madaro, A., Kristiansen, T.S., Gåsnes, S.K., Mejdell, C.M., Gismervik, K. and Stien, L.H., 2019. Sudden exposure to warm water causes instant behavioural responses indicative of nociception or pain in Atlantic salmon. Veterinary and Animal Science, 8, p.100076.

